Lattice of Substitutions is a Heyting Algebra

نویسنده

  • Adam Grabowski
چکیده

(6) For every finite element a of V→̇C holds {a} ∈ SubstitutionSet(V,C). (7) If A a B = A, then for every set a such that a ∈ A there exists a set b such that b ∈ B and b⊆ a. (8) If μ(A a B) = A, then for every set a such that a ∈ A there exists a set b such that b ∈ B and b⊆ a. (9) If for every set a such that a ∈ A there exists a set b such that b ∈ B and b ⊆ a, then μ(A a B) = A. Let V be a set, let C be a finite set, and let A be an element of Fin(V→̇C). The functor InvolvedA is defined by: (Def. 1) x ∈ InvolvedA iff there exists a finite function f such that f ∈ A and x ∈ dom f .

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Heyting algebras and dual BCK-algebras

A Heyting algebra is a distributive lattice with implication and a dual $BCK$-algebra is an algebraic system having as models logical systems equipped with implication. The aim of this paper is to investigate the relation of Heyting algebras between dual $BCK$-algebras. We define notions of $i$-invariant and $m$-invariant on dual $BCK$-semilattices and prove that a Heyting semilattice is equiva...

متن کامل

Algebraic Properties of Intuitionistic Fuzzy Residuated Lattices

In this paper, we investigate more relations between the symmetric residuated lattices $L$ with their corresponding intuitionistic fuzzy residuated lattice $tilde{L}$. It is shown that some algebraic structures of $L$ such as Heyting algebra, Glivenko residuated lattice and strict residuated lattice are preserved for $tilde{L}$. Examples are given for those structures that do not remain the sam...

متن کامل

Profinite Heyting Algebras and Profinite Completions of Heyting Algebras

This paper surveys recent developments in the theory of profinite Heyting algebras (resp. bounded distributive lattices, Boolean algebras) and profinite completions of Heyting algebras (resp. bounded distributive lattices, Boolean algebras). The new contributions include a necessary and sufficient condition for a profinite Heyting algebra (resp. bounded distributive lattice) to be isomorphic to...

متن کامل

Dually quasi-De Morgan Stone semi-Heyting algebras II. Regularity

This paper is the second of a two part series. In this Part, we prove, using the description of simples obtained in Part I, that the variety $mathbf{RDQDStSH_1}$ of regular dually quasi-De Morgan Stone semi-Heyting algebras of level 1 is the join of the variety generated by the twenty 3-element $mathbf{RDQDStSH_1}$-chains and the variety of dually quasi-De Morgan Boolean semi-Heyting algebras--...

متن کامل

Semi-G-filters, Stonean filters, MTL-filters, divisible filters, BL-filters and regular filters in residuated lattices

At present, the filter theory of $BL$textit{-}algebras has been widelystudied, and some important results have been published (see for examplecite{4}, cite{5}, cite{xi}, cite{6}, cite{7}). In other works such ascite{BP}, cite{vii}, cite{xiii}, cite{xvi} a study of a filter theory inthe more general setting of residuated lattices is done, generalizing thatfor $BL$textit{-}algebras. Note that fil...

متن کامل

SOME PROPERTIES OF T-FUZZY GENERALIZED SUBGROUPS

In this paper, we deal with Molaei’s generalized groups. We definethe notion of a fuzzy generalized subgroup with respect to a t-norm (orT-fuzzy generalized subgroup) and give some related properties. Especially,we state and prove the Representation Theorem for these fuzzy generalizedsubgroups. Next, using the concept of continuity of t-norms we obtain a correspondencebetween TF(G), the set of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004